\qquad

ECEN 5713 System Theory
 Spring 1997
 Midterm Exam \#2

I, , promise that I won't seek any help from others. And I
won't discuss with anyone else.

Classification of Systems (20\%)

Problem 1a) Consider a single-variable system whose input and output are related by

$$
y(t)= \begin{cases}\frac{u^{2}(t)}{u(t-1)} & \text { if } u(t-1) \neq 0 \\ 0 & \text { if } u(t-1)=0\end{cases}
$$

for all t. Is this system linear ? causal ? time-invariant ?
Problem $1 b$) Consider a relaxed system whose input and output are related by

$$
y(t)= \begin{cases}u(t) & \text { for } t \leq \alpha \\ 0 & \text { for } t>\alpha\end{cases}
$$

for any u, where α is a fixed constant. Is this system linear? causal? time-invariant?

System Representation ($\mathbf{2 0 \%}$)

Problem 2 Find all three representations (i.e., input-output operator, transfer function, and state space equations) of the following RLC circuit,

Linearization (20\%)

Problem 3 A nonlinear system is given by

$$
\dot{x}=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, u_{1}, u_{2}\right) \\
f_{2}\left(x_{1}, x_{2}, u_{1}, u_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
3+\ln \left(1+x_{1} x_{2}\right)+\ln \left(1-5 x_{1}\right)+\sin ^{2}\left(5 u_{1}\right) \\
x_{1}\left(2+x_{2}\right)^{2}-\cos \left(5 x_{2}\right)-e^{2 u_{2}}
\end{array}\right] .
$$

Note that $x=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}$ is an equilibrium point at $u=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}$. Linearize the system about the equilibrium point. To improve the accuracy, approximate up to the second order in the
\qquad
linearization process in Taylor series expansion. Find the linearized system (my be not in the form of $\{A, B, C, D\}$).

Realization ($\mathbf{2 0 \%}$, do both)

Problem 4a) Find an irreducible (i.e., minimal) controllable canonical form realization (i.e., its simulation diagram and state space equations) for the following system,

$$
H(s)=\left[\begin{array}{c}
\frac{2 s+3}{s^{3}+4 s^{2}+5 s+2} \\
\frac{s^{2}+2 s+2}{s^{4}+3 s^{3}+3 s^{2}+s}
\end{array}\right](\text { hint: A is } 5 \times 5) .
$$

Problem 4b) Find the $\{A, B, C, D\}$ matrices of the composite interconnected system given below,

where $\dot{x}=\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4}\end{array}\right]=A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+B u_{a} ; \quad y_{a}=C\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+D u_{a}$ and $H_{i} \equiv\left\{A_{i}, B_{i}, C_{i}, D_{i}\right\}, i=1,2,3,4$ (hint: you may stop at the temporary variables which are functions of $\left.\left\{A_{i}, B_{i}, C_{i}, D_{i}\right\}, i=1,2,3,4\right)$.

Linear Algebra ($\mathbf{2 0 \%}$)

Problem 5a) Given the set $\{a, b\}$ with $a \neq b$. Define rules of addition and multiplication such that $\{a, b\}$ forms a field. What are the zero and unity elements in the field?
Problem 5b) Let $E=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n}\end{array}\right]^{T}$ be a column vector of error in a multivariable control system. Show that the sume of the squares of the error can be written in several forms, $e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}=E^{T} E=\operatorname{Tr}\left(E E^{T}\right)$.

HOW LONG YOU HAVE SPENT ON THIS EXAM?

